Институт общей физики им. А.М. Прохорова Российской академии наук был организован в 1982 г. на базе Отделения А Физического института им. П.Н. Лебедева АН СССР. Организатор и первый директор института - лауреат Нобелевской премии по физике 1964 г. академик Александр Михайлович Прохоров. В 2002 г. Институту было присвоено имя академика А.М. Прохорова. C 1998 по 2018 гг. директор ИОФ РАН - академик РАН Иван Александрович Щербаков, в настоящее время являющийся научным руководителем Института. С 2018 г. Институт общей физики РАН возглавляет академик РАН Сергей Владимирович Гарнов.
Поступление в аспирантуру ИОФ РАН, целевое обучение, ЕКЦ "Прием в вуз".
Уважаемые коллеги!
Приглашаем вас принять участие в фотоконкурсе "Глазами ученых: конкурс фотографии научного исследования", который проводится среди сотрудников Института общей физики им. А.М. Прохорова РАН. Победителей ждут ценные призы и денежное вознаграждение! Работы принимаются с 29 сентября 2025 года по 16 ноября 2025 года (включительно). Результаты конкурса будут опубликованы 28 ноября 2025 года на официальном сайте и в социальных сетях Института. Награждение пройдет на заседании Ученого совета ИОФ РАН.
Уважаемые коллеги!
Комиссия Ученого совета по проведению конкурса лучших публикаций ИОФ РАН информирует Вас о проведении нового конкурса публикаций – молодежного конкурса 2025 г. (Положение о конкурсе утверждено Приказом директора ИОФ РАН №103 от 16.04.2025 г.).
Участником конкурса может быть молодой сотрудник или аспирант ИОФ РАН в возрасте до 35 лет на момент объявления конкурса. Для участника конкурса ИОФ РАН должен являться основным местом работы.
В 2024 году Юлия Владимировна Назаренко, старший лаборант лаборатории гидрофизики НЦВИ ИОФ РАН, приняла участие в масштабной экспедиции «Плавучий университет МФТИ — ИО РАН 2024» на научно-исследовательском судне «Профессор Молчанов».
Юлия прошла путь от Архангельска до Тикси вместе с командой океанологов, объединившей специалистов по гидрофизике, гидробиологии, гео- и гидрохимии, а также специалистов по исследованию ионосферы, для комплексного изучения гидрофизических процессов в условиях стремительно меняющейся Арктики.
Ученые Института геохимии и аналитической химии им. В.И. Вернадского РАН совместно с Институтом общей физики им. А.М. Прохорова РАН разработали новый перспективный метод контроля качества растительных масел. В основе разработки лежит уникальная комбинация лазерно-индуцированной плазмы (метод APLPI — Atmospheric Pressure Laser Plasma Ionization) и современных методов машинного обучения.
Результаты исследования опубликованы в статье Direct Analysis of Vegetable Oils by Atmospheric Pressure Laser Plasma Ionization Combined with Machine Learning Methods (K. Yu. Kravets, S. I. Timakova, A. A. Grechnikov, S. M. Nikiforov).
С 1 по 25 июля 2025 года в Институте общей физики им. А.М. Прохорова Российской академии наук состоялась Летняя школа для молодых ученых и студентов, посвященная передовым исследованиям в области лазерных, терагерцовых и биомедицинских технологий. В мероприятии приняли участие более 50 студентов, аспирантов и молодых ученых из научных центров и ведущих вузов, включая МГТУ им. Н.Э. Баумана, НИЯУ МИФИ, МГУ им. М.В. Ломоносова и др.
Телеканал «Наука» и Российский научный фонд подвели итоги ежегодного конкурса фотографий «Снимай науку!» и объявили имена победителей сезона 2025 года. Мы с гордостью сообщаем, что в категории «Микроизображения» победителем стал Курилов Александр Дмитриевич, научный сотрудник лаборатории фотоники и органической электроники Центра Биофотоники, с фотографией «Тайны лепестка розы»:

Завораживающая микротопография лепестка розы (ширина кадра — 50 микрон), полученная методом атомно-силовой микроскопии, — это не просто красота природы, а точный инженерный дизайн эволюции. Именно такая микроструктура отвечает за известный эффект лепестка розы: капли воды прочно удерживаются на поверхности, несмотря на её способность отталкивать воду (супергидрофобность). В отличие от классического «эффекта лотоса», капли не скатываются — они прилипают, сохраняя почти идеальную форму шара. Эти свойства вдохновляют ученых на разработку умных покрытий, самоочищающихся материалов и сенсоров нового поколения.
Поздравляем Александра с заслуженной победой и желаем новых достижений на стыке науки и искусства!
Полный список лауреатов и их работ можно найти на сайте конкурса.
Российский научный фонд (РНФ) подвел итоги ежегодных конкурсов на получение грантов для поддержки научных исследований. В 2025 году финансирование было выделено по трем ключевым направлениям:
Авторами работы была сконструирована электрохимическая ячейка типа “суперконденсатор”, где рабочим электродом являлась пленка из одностенных углеродных нанотрубок (ОУНТ), заполненных йодом. Наблюдалась in situ индуцированная зарядом (легированием) трансформация одномерных объектов йода внутри ОУНТ. Полученные результаты являются шагом к производству наноразмерных элементов, свойства которых можно модулировать, а главное, эти изменения можно обнаружить и предсказать. Другим важным применением является использование таких объектов в качестве маркера локального заряда и распределения заряда по поверхности, например, электродов в электрохимических ячейках. (По материалам статьи A.A. Tonkikh, D.V. Rybkovskiy, E.D. Obraztsova, “Charge-induced structure variations of 1D-iodine inside thin SWCNTs”, The Journal of Physical Chemistry C, 127 (6), 3005-3012, 2023. DOI: 10.1021/acs.jpcc.2c06920)
В работе впервые реализован непрерывный Ce3+ лазер среднего инфракрасного диапазона спектра на основе халькогенидного оптического волокна. Для сердцевины волокна использовано легированное церием селенидное стекло Ge20Ga5Sb10Se65, для оболочки – нелегированное сульфидное стекло Ge12As20Sb5S63. В качестве источника накачки применен непрерывный 4.16 мкм лазер на кристалле Fe2+:ZnSe. Ce3+ лазер работал при комнатной температуре на длинах волн вблизи 5 мкм. Выходная мощность излучения достигала 0.5 мВт. (По материалам статьи V.V. Koltashev, M.P. Frolov, S.O. Leonov, S.E. Sverchkov, B.I. Galagan, Yu.V. Korostelin, Ya.K. Skasyrsky, G.E. Snopatin, M.V. Sukhanov, A.P. Velmuzhov, V.I. Kozlovsky, B.I. Denker, V.G. Plotnichenko «Characteristics of a CW ~ 5 μm Ce3+-doped chalcogenide glass fiber laser» Laser Physics Letters. – 2023. – Vol. 20. – 095801. DOI: 10.1088/1612-202X/ace9ce)

В работе впервые описан процесс роста протяженных плоских наночастиц SrF2:Yb:Er из частиц меньших размеров сферической морфологии. Исследование позволило усовершенствовать процесс синтеза высококачественных порошков-прекурсоров для получения оптической керамики, защитной маркировки и фотоконверсионных покрытий для увеличения КПД солнечных панелей. (По материалам статьи Yu.A. Ermakova, D.V. Pominova, V.V. Voronov, A.D. Yapryntsev, V.K. Ivanov, N.Yu. Tabachkova, P.P. Fedorov, S.V. Kuznetsov. Synthesis of SrF2:Yb:Er ceramics precursor powder by co-precipitation from aqueous solution with different fluorinating media: NaF, KF and NH4F. Dalton Trans. – 2022. – 51. – 5448. DOI: 10.1039/D2DT00304J)
В работе предложен новый подход к получению рентгеновизуализационных материалов, заключающийся в синтезе сложных составов на основе твердого раствора Sr0.85-xBaxEu0.15F2.15 посредством замены стронция на более тяжелый элемент - барий. Предложенный подход даёт возможность синтезировать ранее недоступные твердые растворы на основе фторида бария с редкоземельными элементами при стабилизации его фторидом стронция, что позволяет существенно увеличить интенсивность люминесценции. (По материалам статьи S.V. Kuznetsov, Yu.A. Ermakova, K.N. Boldyrev, V.S. Sedov, A.A. Alexandrov, V.V. Voronov, S.Kh. Batygov, A.D. Rezaeva, A.R. Drobysheva, N.Yu. Tabachkova. Single-Phase Nanopowders of Sr0.85-xBaxEu0.15F2.15: Investigation of Structure and X-ray Luminescent Properties / Ceramics International. 2023. V. 49, Is. 23. P. 39189-39195. DOI: 10.1016/j.ceramint.2023.09.262)
Впервые в ИК-спектрах поглощения алмазных наночастиц, терминированных водородом, обнаружен узкий пик прозрачности на частоте 1328 см-1. Необычный для чистого алмаза пик прозрачности мы связываем с деструктивной интерференцией Фано типа между фононами алмазной решетки и свободными носителями заряда, индуцированными водородом в приповерхностном слое наноалмаза. (По материалам статьи Kudryavtsev O.S., Bagramov R.H., Satanin A.M., Shiryaev A.A., Lebedev O.I., Romshin A.M., Pasternak D.G., Nikolaev A.V., Filonenko V.P., Vlasov I.I. «Fano-type Effect in Hydrogen-Terminated Pure Nanodiamond»; Nano Letters. – 2022, – Vol. 22, No. 7, – P. 2589-2594 DOI: 10.1021/acs.nanolett.1c04887)

Одними из самых известных активаторов твердотельных лазерных сред являются трехвалентные ионы неодима. Неодимовые лазеры с длиной волны генерации 1,06 мкм являются одними из самых распространенных лазеров. Вместе с тем, ионы Nd3+ в матрицах с коротким фононным спектром могут проявлять интенсивную люминесценцию в области 5-6 мкм, в частности, на переходе 4I11/2 - 4I9/2. Однако вопрос получения генерации за счет ионов Nd3+ в средней инфракрасной области если и рассматривался периодически специалистами, то преимущественно в теоретическом плане. Прямая оптическая накачка перехода 4I11/2 - 4I9/2 осложнена неудобным расположением полос поглощения неодима. В настоящем исследовании предложено использовать ионы Tb3+ в качестве эффективных сенсибилизаторов 5-6 мкм люминесценции ионов неодима в селенидных стеклах. Ионы Tb3+ удобно накачивать Er:YAG лазерами с длиной волны 2,9 мкм, а также тулиевыми лазерами и лазерными диодами с длинами волн в диапазоне 1,9-2 мкм. В работе было установлено, что в селенидных стеклах имеет место эффективный безызлучательный перенос энергии от Tb3+ к Nd3+, но при комнатной температуре он сочетается с обратным процессом переноса энергии от Nd3+ к Tb3+, что затрудняет достижение инверсии на рассматриваемом переходе. Однако при охлаждении образца до температуры жидкого азота передача энергии от Tb3+ к Nd3+ становится необратимой. Предложенная схема сенсибилизации должна позволить разработать лазеры на неодимовом селенидном стекле, излучающие в области ~ 6 мкм. (По материалам статьи B.I. Denker, M.P. Frolov, B.I. Galagan, V.V. Koltashev, Yu.V. Korostelin, V.G. Plotnichenko, M.V. Sukhanov, S.E. Sverchkov, A.P. Velmuzhov. Sensitization of 5-6 μm Nd3+ luminescence in selenide glass by Tb3+ ions, Journal of Luminescence 263 (2023) 120056 DOI: 10.1016/j.jlumin.2023.120056)
В настоящей работе кристаллы ортованадата кальция, активированные ионами хрома, были синтезированы методом Чохральского. Разработанная технология обеспечивала получение образцов высокого оптического качества. Проведенные исследования спектроскопических свойств синтезированного кристалла впервые показали наличие ионов хрома в трех различных валентных состояниях: Cr3+, Cr4+ и Cr5+. Благодаря широкому спектру люминесценции ионов хрома, данный кристалл может рассматриваться как перспективная лазерная матрица для перестраиваемых лазеров в ИК области спектра. При этом возможно получение как широкополосной генерации ионов Cr3+ в диапазоне 800-1000 нм, так и генерации ионов Cr4+ в диапазоне 1100-1400 нм.
(По материалам статьи M.E. Doroshenko, L.I. Ivleva, I.S. Voronina, E.E. Dunaeva. Polyvalent chromium ions state in new Ca3(VO4)2:Cr single crystal. J. of Luminescence. – 2023. – 253. – 119449 DOI: 10.1016/j.jlumin.2022.119449)