Институт общей физики им. А.М. Прохорова Российской академии наук был организован в 1982 г. на базе Отделения А Физического института им. П.Н. Лебедева АН СССР. Организатор и первый директор института - лауреат Нобелевской премии по физике 1964 г. академик Александр Михайлович Прохоров. В 2002 г. Институту было присвоено имя академика А.М. Прохорова. C 1998 по 2018 гг. директор ИОФ РАН - академик РАН Иван Александрович Щербаков, в настоящее время являющийся научным руководителем Института. С 2018 г. Институт общей физики РАН возглавляет член-корреспондент РАН Сергей Владимирович Гарнов.
21 апреля 2025 г. стартовал прием тезисов докладов и регистрация на 8-ую Школу-конференцию молодых ученых «Прохоровские недели» 2025!
Павел Павлович Пашинин
К 90-летию со дня рождения
01.05.1935 - 18.12.2020
1 мая 2025 года исполняется 90 лет со дня рождения Павла Павловича Пашинина, одного из ближайших учеников академика А.М. Прохорова, стоявшего у истоков квантовой электроники и лазерной физики в нашей стране, выдающегося российского учёного- физика, крупного организатора отечественной науки, доктора физико-математических наук, профессора, члена-корреспондента РАН. С именем П.П. Пашинина связаны крупные достижения мировой и отечественной науки в области физики лазеров, взаимодействия когерентного излучения с веществом, лазерной плазмы и лазерной спектроскопии.
Семинар им. чл.-корр. РАН П.П. Пашинина, посвященный 90-летию со дня рождения П.П. Пашинина, состоится 21 мая 2025 г. в 13:00 в конференц-зале корпуса 1 ИОФ РАН. В фойе перед конференц-залом открыта выставка “Пашинин Павел Павлович, к 90-летию со дня рождения”.
Открыт прием заявок для молодых ученых на соискание премии Правительства Москвы за 2025 год. Подробности в объявлении на сайте ИОФ РАН.
9 апреля в Физическом институте им. П.Н. Лебедева РАН (ФИАН) состоялось торжественное мероприятие, посвященное 80-летию Великой Победы!
Комиссия Ученого совета по проведению конкурса лучших публикаций ИОФ РАН информирует о проведении нового конкурса публикаций – молодежного конкурса лучших публикаций ИОФ РАН 2025 г. Положение о конкурсе утверждено Приказом директора ИОФ РАН №103 от 16.04.2025 г.
По распоряжению директора ИОФ РАН, чл.-корр. РАН С.В. Гарнова в конкурсе разыгрываются три надбавки длительного действия (стипендии) для молодых ученых в размере 100 тыс. руб., 75 тыс. руб., 50 тыс. руб. в месяц на срок 12 месяцев. Число победителей конкурса (не более трех) и ранжирование в списке победителей будут определяться комиссией Ученого совета по проведению конкурса лучших публикаций самостоятельно.
Участником конкурса может быть молодой сотрудник или аспирант ИОФ РАН в возрасте до 35 лет на момент объявления конкурса. Для участника конкурса ИОФ РАН должен являться основным местом работы.
16.04.2025 в ИОФ РАН на семинаре «Актуальная физика» с приглашённым докладом «Полые световоды: новые возможности для лазерных и коммуникационных применений» выступит Гладышев Алексей Вячеславович, кандидат физико-математических наук, старший научный сотрудник ИОФ РАН.
Доклад посвящен рассмотрению последних достижений в области разработки полых световодов и обсуждению как уже реализованных, так и перспективных применений таких световодов. Будет представлен обзор волоконных источников лазерного излучения на основе газонаполненных полых световодов с длиной волны генерации в спектральном диапазоне от ~100 нм до ~5 мкм.
Семинар ИОФ РАН «Актуальная физика», № 23 16.04.2025 г., 13:00, ИОФ РАН, корп. 1, конференц-зал, Москва, ул. Вавилова 38.
Руководитель семинара: Демишев Сергей Васильевич, д.ф.-м.н., профессор, руководитель научного направления «Квантовые материалы, технологии и фотоника».
Семинар проходит в смешанном режиме. По всем вопросам участия в семинаре обращаться к Николаевой Гульнаре по электронной почте: nikolaeva@kapella.gpi.ru. Для заказа пропуска или участия в семинаре в онлайн формате необходимо указать ФИО полностью и место работы.
Проход на территорию ИОФ РАН возможен только по действующему паспорту гражданина РФ.
Для заказа пропусков обращаться не позднее, чем за два дня до даты проведения семинара. По вопросам участия в онлайн формате обращаться до 12:30 16 апреля 2025 г.
Рис. 1. Конструкции современных полых световодов:
(А) A.D. Pryamikov, et al., Opt. Express 19, 1441 (2011), DOI: 10.1364/OE.19.001441
(Б) A.N. Kolyadin, et al., Opt. Express 21, 9514 (2013), DOI: 10.1364/OE.21.009514
(В) А.Ф. Косолапов, и др., Квантовая электроника 46(3), 267 (2016), https://www.mathnet.ru/links/8278232c23e0921f86b156616df853b1/qe16352.pdf
(Г) H. Sakr, et al., Optical Fiber Communication Conference 2021, paper F3A.4, DOI: 10.1364/OFC.2021.F3A.4
(Д) Y. Chen, et al., Optical Fiber Communication Conference 2024, paper Th4A.8, DOI: 10.1364/OFC.2024.Th4A.8
(Е) S. Gao, et al., Advanced Photonics Congress 2024, paper JTh4A.5. DOI: 10.1364/BGPP.2024.JTh4A.5
7 апреля 2025 г. в ИОФ РАН открывается 21-ое Международное совещание "Сложные системы заряженных частиц и их взаимодействие с электромагнитным излучением -2025" (CSCPIER-2025).
Приглашаем принять участие в значимом международном научном событии, проходящем в ИОФ РАН 21-ом Международном совещании "Сложные системы заряженных частиц и их взаимодействие с электромагнитным излучением -2025" (CSCPIER-2025).
В работе впервые описан процесс роста протяженных плоских наночастиц SrF2:Yb:Er из частиц меньших размеров сферической морфологии. Исследование позволило усовершенствовать процесс синтеза высококачественных порошков-прекурсоров для получения оптической керамики, защитной маркировки и фотоконверсионных покрытий для увеличения КПД солнечных панелей. (По материалам статьи Yu.A. Ermakova, D.V. Pominova, V.V. Voronov, A.D. Yapryntsev, V.K. Ivanov, N.Yu. Tabachkova, P.P. Fedorov, S.V. Kuznetsov. Synthesis of SrF2:Yb:Er ceramics precursor powder by co-precipitation from aqueous solution with different fluorinating media: NaF, KF and NH4F. Dalton Trans. – 2022. – 51. – 5448. DOI: 10.1039/D2DT00304J)
В работе предложен новый подход к получению рентгеновизуализационных материалов, заключающийся в синтезе сложных составов на основе твердого раствора Sr0.85-xBaxEu0.15F2.15 посредством замены стронция на более тяжелый элемент - барий. Предложенный подход даёт возможность синтезировать ранее недоступные твердые растворы на основе фторида бария с редкоземельными элементами при стабилизации его фторидом стронция, что позволяет существенно увеличить интенсивность люминесценции. (По материалам статьи S.V. Kuznetsov, Yu.A. Ermakova, K.N. Boldyrev, V.S. Sedov, A.A. Alexandrov, V.V. Voronov, S.Kh. Batygov, A.D. Rezaeva, A.R. Drobysheva, N.Yu. Tabachkova. Single-Phase Nanopowders of Sr0.85-xBaxEu0.15F2.15: Investigation of Structure and X-ray Luminescent Properties / Ceramics International. 2023. V. 49, Is. 23. P. 39189-39195. DOI: 10.1016/j.ceramint.2023.09.262)
Впервые в ИК-спектрах поглощения алмазных наночастиц, терминированных водородом, обнаружен узкий пик прозрачности на частоте 1328 см-1. Необычный для чистого алмаза пик прозрачности мы связываем с деструктивной интерференцией Фано типа между фононами алмазной решетки и свободными носителями заряда, индуцированными водородом в приповерхностном слое наноалмаза. (По материалам статьи Kudryavtsev O.S., Bagramov R.H., Satanin A.M., Shiryaev A.A., Lebedev O.I., Romshin A.M., Pasternak D.G., Nikolaev A.V., Filonenko V.P., Vlasov I.I. «Fano-type Effect in Hydrogen-Terminated Pure Nanodiamond»; Nano Letters. – 2022, – Vol. 22, No. 7, – P. 2589-2594 DOI: 10.1021/acs.nanolett.1c04887)
Одними из самых известных активаторов твердотельных лазерных сред являются трехвалентные ионы неодима. Неодимовые лазеры с длиной волны генерации 1,06 мкм являются одними из самых распространенных лазеров. Вместе с тем, ионы Nd3+ в матрицах с коротким фононным спектром могут проявлять интенсивную люминесценцию в области 5-6 мкм, в частности, на переходе 4I11/2 - 4I9/2. Однако вопрос получения генерации за счет ионов Nd3+ в средней инфракрасной области если и рассматривался периодически специалистами, то преимущественно в теоретическом плане. Прямая оптическая накачка перехода 4I11/2 - 4I9/2 осложнена неудобным расположением полос поглощения неодима. В настоящем исследовании предложено использовать ионы Tb3+ в качестве эффективных сенсибилизаторов 5-6 мкм люминесценции ионов неодима в селенидных стеклах. Ионы Tb3+ удобно накачивать Er:YAG лазерами с длиной волны 2,9 мкм, а также тулиевыми лазерами и лазерными диодами с длинами волн в диапазоне 1,9-2 мкм. В работе было установлено, что в селенидных стеклах имеет место эффективный безызлучательный перенос энергии от Tb3+ к Nd3+, но при комнатной температуре он сочетается с обратным процессом переноса энергии от Nd3+ к Tb3+, что затрудняет достижение инверсии на рассматриваемом переходе. Однако при охлаждении образца до температуры жидкого азота передача энергии от Tb3+ к Nd3+ становится необратимой. Предложенная схема сенсибилизации должна позволить разработать лазеры на неодимовом селенидном стекле, излучающие в области ~ 6 мкм. (По материалам статьи B.I. Denker, M.P. Frolov, B.I. Galagan, V.V. Koltashev, Yu.V. Korostelin, V.G. Plotnichenko, M.V. Sukhanov, S.E. Sverchkov, A.P. Velmuzhov. Sensitization of 5-6 μm Nd3+ luminescence in selenide glass by Tb3+ ions, Journal of Luminescence 263 (2023) 120056 DOI: 10.1016/j.jlumin.2023.120056)
В настоящей работе кристаллы ортованадата кальция, активированные ионами хрома, были синтезированы методом Чохральского. Разработанная технология обеспечивала получение образцов высокого оптического качества. Проведенные исследования спектроскопических свойств синтезированного кристалла впервые показали наличие ионов хрома в трех различных валентных состояниях: Cr3+, Cr4+ и Cr5+. Благодаря широкому спектру люминесценции ионов хрома, данный кристалл может рассматриваться как перспективная лазерная матрица для перестраиваемых лазеров в ИК области спектра. При этом возможно получение как широкополосной генерации ионов Cr3+ в диапазоне 800-1000 нм, так и генерации ионов Cr4+ в диапазоне 1100-1400 нм.
(По материалам статьи M.E. Doroshenko, L.I. Ivleva, I.S. Voronina, E.E. Dunaeva. Polyvalent chromium ions state in new Ca3(VO4)2:Cr single crystal. J. of Luminescence. – 2023. – 253. – 119449 DOI: 10.1016/j.jlumin.2022.119449)
В работе описан одночастотный волоконный лазер на основе разработанного в ИОФ РАН композитного оптического волокна, активированного ионами Er3+ и Yb3+. Такие композитные (с сердцевиной на фосфатной основе и с кварцевой оболочкой) волокна сочетают достоинства фосфатных (высокий уровень легирования, эффективная лазерная генерация в системе Er-Yb) и кварцевых волоконных световодов (механическая прочность, влагостойкость, минимальные потери при сварке со стандартными кварцевыми волокнами). В настоящей работе был обнаружен и качественно объяснен интересный и практически важный эффект. Если при накачке по сенсибилизационной схеме в полосу поглощения иттербия (на 974,5 нм) лазер во всем диапазоне значений мощности накачки генерировал строго непрерывно, то при накачке непосредственно ионов эрбия (на длине волны 1485 нм) генерация лазера имела тенденцию к самомодуляции добротности, а непрерывный режим достигался лишь при значительном (в несколько раз) превышении порога. Накачка в полосу поглощения Yb3+ также оказалась более эффективной энергетически. Она обеспечила низкопороговую (6 мВт) и эффективную (дифф. КПД 4% от поглощенной мощности) работу на одной продольной моде с выходной мощностью 17 мВт.
Таким образом, по своим характеристикам представленный лазер вполне сопоставим с коммерчески доступными полупроводниковыми диодными аналогами, использующимися в настоящее время в телекоммуникационном сегменте. В то же время, волоконный лазер, по сравнению с полупроводниковым, отличается нечувствительностью к электромагнитным помехам, устойчивостью к воздействию агрессивных сред, а также более широким рабочим диапазоном температур (от -50 до +100 °С).
(По материалам статьи A.A. Rybaltovsky, A.P. Bazakutsa, B.I. Denker, O.N. Egorova, S.E. Sverchkov, V.V. Velmiskin. «Lasing features of the ultra-short Fabry–Perot cavity on the basis of a photosensitive Er/Yb-doped multimaterial fiber with a silicophosphate core» Journal of the Optical Society of America B. – 2023. – Vol. 40, No. 5. – P. 1182-1186. DOI: 10.1364/JOSAB.486728)
Впервые продемонстрирована принципиальная возможность создания волоконных усилителей, накачиваемых многомодовым излучением полупроводниковых диодов, на основе различных типов висмутовых световодов, которые способны работать в O-, E- и S-телекоммуникационных диапазонах (O {1260–1360 нм}; E {1360–1460 нм}; S {1460–1530 нм}). (По материалам статьи Alexander Vakhrushev, Aleksandr Khegai, Sergey Alyshev, Konstantin Riumkin, Alexander Kharakhordin, Elena Firstova, Andrey Umnikov, Alexey Lobanov, Fedor Afanasiev, Aleksei Guryanov, Mikhail Melkumov, Sergei Firstov, «Cladding-Pumped Bismuth-Doped Fiber Amplifiers Operating in O-, E- and S-telecom Bands» Optics Letters. – 2023. – Vol. 48, No. 6. – P. 1339-1342. DOI: 10.1364/OL.482873)