Институт общей физики им. А.М. Прохорова Российской академии наук был организован в 1982 г. на базе Отделения А Физического института им. П.Н. Лебедева АН СССР. Организатор и первый директор института - лауреат Нобелевской премии по физике 1964 г. академик Александр Михайлович Прохоров. В 2002 г. Институту было присвоено имя академика А.М. Прохорова. C 1998 по 2018 гг. директор ИОФ РАН - академик РАН Иван Александрович Щербаков, в настоящее время являющийся научным руководителем Института. С 2018 г. Институт общей физики РАН возглавляет академик РАН Сергей Владимирович Гарнов.
От всей души поздравляем Конова Виталия Ивановича с юбилеем! Ваша преданность делу служат вдохновением для коллег и учеников! В этот день искренне желаем Ваш крепкого здоровья, новых научных свершений и воплощения самых смелых проектов! Пусть Ваша мудрость и опыт еще долгие годы служат развитию российской науки!
10 июня Институт общей физики им. А.М. Прохорова РАН принял участников Всероссийской олимпиады учителей физики «Лига Лучших», организованной Национальным исследовательским ядерным университетом «МИФИ» при поддержке Госкорпорации «Росатом», Российской академии наук и других ведущих научных организаций.
Название: Кросс-релаксационные процессы и 5,7 мкм лазерная генерация в легированном неодимом селенидном стекле
Авторы: Б.И. Денкер, Б.И. Галаган, В.В. Колташев, В.Г. Плотниченко, С.Е. Сверчков
Ученые ИОФ РАН в сотрудничестве с учеными из Физического института имени П.Н. Лебедева РАН и Института химии высокочистых веществ им. Г.Г. Девятых РАН предложили и реализовали новую схему накачки лазеров на легированном неодимом селенидном стекле с длиной волны генерации 5,7 мкм в среднем инфракрасном (ИК) диапазоне. В работе достигнута выходная энергия генерации до 26 мДж при дифференциальном КПД 26% и спектральная перестройка в диапазоне 5,55-6,07 мкм. Разработка твердотельных лазеров среднего ИК диапазона представляет особый интерес для таких применений, как спектроскопия, дистанционное зондирование газовых смесей и атмосферы в экологии, медицине, контроле производственных процессов. В этой спектральной области располагаются основные полосы поглощения многих органических и неорганических молекул и соединений.
Поздравляем с избранием академиком РАН директора ИОФ РАН Гарнова Сергея Владимировича!
Научный семинар им. чл.-корр. РАН П.П. Пашинина пройдет 21 мая 2025 г. в 13:00 в конференц-зале ИОФ РАН (корпус 1)
Программа
Пашинин Павел Павлович, к 90-летию со дня рождения
Выставка посвящена 90-летию со дня рождения Павла Павловича Пашинина, доктора физико-математических наук, профессора, член-корреспорндента Российской Академии наук, главного научного сотрудника Института общей физики РАН.
На выставке представлены научные статьи и фотографии из семейного архива.
Приглашаем всех научных сотрудников и работников ИОФ РАН на выставку!
В работе впервые описан процесс роста протяженных плоских наночастиц SrF2:Yb:Er из частиц меньших размеров сферической морфологии. Исследование позволило усовершенствовать процесс синтеза высококачественных порошков-прекурсоров для получения оптической керамики, защитной маркировки и фотоконверсионных покрытий для увеличения КПД солнечных панелей. (По материалам статьи Yu.A. Ermakova, D.V. Pominova, V.V. Voronov, A.D. Yapryntsev, V.K. Ivanov, N.Yu. Tabachkova, P.P. Fedorov, S.V. Kuznetsov. Synthesis of SrF2:Yb:Er ceramics precursor powder by co-precipitation from aqueous solution with different fluorinating media: NaF, KF and NH4F. Dalton Trans. – 2022. – 51. – 5448. DOI: 10.1039/D2DT00304J)
В работе предложен новый подход к получению рентгеновизуализационных материалов, заключающийся в синтезе сложных составов на основе твердого раствора Sr0.85-xBaxEu0.15F2.15 посредством замены стронция на более тяжелый элемент - барий. Предложенный подход даёт возможность синтезировать ранее недоступные твердые растворы на основе фторида бария с редкоземельными элементами при стабилизации его фторидом стронция, что позволяет существенно увеличить интенсивность люминесценции. (По материалам статьи S.V. Kuznetsov, Yu.A. Ermakova, K.N. Boldyrev, V.S. Sedov, A.A. Alexandrov, V.V. Voronov, S.Kh. Batygov, A.D. Rezaeva, A.R. Drobysheva, N.Yu. Tabachkova. Single-Phase Nanopowders of Sr0.85-xBaxEu0.15F2.15: Investigation of Structure and X-ray Luminescent Properties / Ceramics International. 2023. V. 49, Is. 23. P. 39189-39195. DOI: 10.1016/j.ceramint.2023.09.262)
Впервые в ИК-спектрах поглощения алмазных наночастиц, терминированных водородом, обнаружен узкий пик прозрачности на частоте 1328 см-1. Необычный для чистого алмаза пик прозрачности мы связываем с деструктивной интерференцией Фано типа между фононами алмазной решетки и свободными носителями заряда, индуцированными водородом в приповерхностном слое наноалмаза. (По материалам статьи Kudryavtsev O.S., Bagramov R.H., Satanin A.M., Shiryaev A.A., Lebedev O.I., Romshin A.M., Pasternak D.G., Nikolaev A.V., Filonenko V.P., Vlasov I.I. «Fano-type Effect in Hydrogen-Terminated Pure Nanodiamond»; Nano Letters. – 2022, – Vol. 22, No. 7, – P. 2589-2594 DOI: 10.1021/acs.nanolett.1c04887)
Одними из самых известных активаторов твердотельных лазерных сред являются трехвалентные ионы неодима. Неодимовые лазеры с длиной волны генерации 1,06 мкм являются одними из самых распространенных лазеров. Вместе с тем, ионы Nd3+ в матрицах с коротким фононным спектром могут проявлять интенсивную люминесценцию в области 5-6 мкм, в частности, на переходе 4I11/2 - 4I9/2. Однако вопрос получения генерации за счет ионов Nd3+ в средней инфракрасной области если и рассматривался периодически специалистами, то преимущественно в теоретическом плане. Прямая оптическая накачка перехода 4I11/2 - 4I9/2 осложнена неудобным расположением полос поглощения неодима. В настоящем исследовании предложено использовать ионы Tb3+ в качестве эффективных сенсибилизаторов 5-6 мкм люминесценции ионов неодима в селенидных стеклах. Ионы Tb3+ удобно накачивать Er:YAG лазерами с длиной волны 2,9 мкм, а также тулиевыми лазерами и лазерными диодами с длинами волн в диапазоне 1,9-2 мкм. В работе было установлено, что в селенидных стеклах имеет место эффективный безызлучательный перенос энергии от Tb3+ к Nd3+, но при комнатной температуре он сочетается с обратным процессом переноса энергии от Nd3+ к Tb3+, что затрудняет достижение инверсии на рассматриваемом переходе. Однако при охлаждении образца до температуры жидкого азота передача энергии от Tb3+ к Nd3+ становится необратимой. Предложенная схема сенсибилизации должна позволить разработать лазеры на неодимовом селенидном стекле, излучающие в области ~ 6 мкм. (По материалам статьи B.I. Denker, M.P. Frolov, B.I. Galagan, V.V. Koltashev, Yu.V. Korostelin, V.G. Plotnichenko, M.V. Sukhanov, S.E. Sverchkov, A.P. Velmuzhov. Sensitization of 5-6 μm Nd3+ luminescence in selenide glass by Tb3+ ions, Journal of Luminescence 263 (2023) 120056 DOI: 10.1016/j.jlumin.2023.120056)
В настоящей работе кристаллы ортованадата кальция, активированные ионами хрома, были синтезированы методом Чохральского. Разработанная технология обеспечивала получение образцов высокого оптического качества. Проведенные исследования спектроскопических свойств синтезированного кристалла впервые показали наличие ионов хрома в трех различных валентных состояниях: Cr3+, Cr4+ и Cr5+. Благодаря широкому спектру люминесценции ионов хрома, данный кристалл может рассматриваться как перспективная лазерная матрица для перестраиваемых лазеров в ИК области спектра. При этом возможно получение как широкополосной генерации ионов Cr3+ в диапазоне 800-1000 нм, так и генерации ионов Cr4+ в диапазоне 1100-1400 нм.
(По материалам статьи M.E. Doroshenko, L.I. Ivleva, I.S. Voronina, E.E. Dunaeva. Polyvalent chromium ions state in new Ca3(VO4)2:Cr single crystal. J. of Luminescence. – 2023. – 253. – 119449 DOI: 10.1016/j.jlumin.2022.119449)
В работе описан одночастотный волоконный лазер на основе разработанного в ИОФ РАН композитного оптического волокна, активированного ионами Er3+ и Yb3+. Такие композитные (с сердцевиной на фосфатной основе и с кварцевой оболочкой) волокна сочетают достоинства фосфатных (высокий уровень легирования, эффективная лазерная генерация в системе Er-Yb) и кварцевых волоконных световодов (механическая прочность, влагостойкость, минимальные потери при сварке со стандартными кварцевыми волокнами). В настоящей работе был обнаружен и качественно объяснен интересный и практически важный эффект. Если при накачке по сенсибилизационной схеме в полосу поглощения иттербия (на 974,5 нм) лазер во всем диапазоне значений мощности накачки генерировал строго непрерывно, то при накачке непосредственно ионов эрбия (на длине волны 1485 нм) генерация лазера имела тенденцию к самомодуляции добротности, а непрерывный режим достигался лишь при значительном (в несколько раз) превышении порога. Накачка в полосу поглощения Yb3+ также оказалась более эффективной энергетически. Она обеспечила низкопороговую (6 мВт) и эффективную (дифф. КПД 4% от поглощенной мощности) работу на одной продольной моде с выходной мощностью 17 мВт.
Таким образом, по своим характеристикам представленный лазер вполне сопоставим с коммерчески доступными полупроводниковыми диодными аналогами, использующимися в настоящее время в телекоммуникационном сегменте. В то же время, волоконный лазер, по сравнению с полупроводниковым, отличается нечувствительностью к электромагнитным помехам, устойчивостью к воздействию агрессивных сред, а также более широким рабочим диапазоном температур (от -50 до +100 °С).
(По материалам статьи A.A. Rybaltovsky, A.P. Bazakutsa, B.I. Denker, O.N. Egorova, S.E. Sverchkov, V.V. Velmiskin. «Lasing features of the ultra-short Fabry–Perot cavity on the basis of a photosensitive Er/Yb-doped multimaterial fiber with a silicophosphate core» Journal of the Optical Society of America B. – 2023. – Vol. 40, No. 5. – P. 1182-1186. DOI: 10.1364/JOSAB.486728)
Впервые продемонстрирована принципиальная возможность создания волоконных усилителей, накачиваемых многомодовым излучением полупроводниковых диодов, на основе различных типов висмутовых световодов, которые способны работать в O-, E- и S-телекоммуникационных диапазонах (O {1260–1360 нм}; E {1360–1460 нм}; S {1460–1530 нм}). (По материалам статьи Alexander Vakhrushev, Aleksandr Khegai, Sergey Alyshev, Konstantin Riumkin, Alexander Kharakhordin, Elena Firstova, Andrey Umnikov, Alexey Lobanov, Fedor Afanasiev, Aleksei Guryanov, Mikhail Melkumov, Sergei Firstov, «Cladding-Pumped Bismuth-Doped Fiber Amplifiers Operating in O-, E- and S-telecom Bands» Optics Letters. – 2023. – Vol. 48, No. 6. – P. 1339-1342. DOI: 10.1364/OL.482873)